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ABSTRACT

Stable isotope labeling is central to NMR studies
of nucleic acids. Development of methods that in-
corporate labels at specific atomic positions within
each nucleotide promises to expand the size range
of RNAs that can be studied by NMR. Using recom-
binantly expressed enzymes and chemically synthe-
sized ribose and nucleobase, we have developed an
inexpensive, rapid chemo-enzymatic method to label
ATP and GTP site specifically and in high yields of up
to 90%. We incorporated these nucleotides into RNAs
with sizes ranging from 27 to 59 nucleotides using in
vitro transcription: A-Site (27 nt), the iron responsive
elements (29 nt), a fluoride riboswitch from Bacillus
anthracis (48 nt), and a frame-shifting element from
a human corona virus (59 nt). Finally, we showcase
the improvement in spectral quality arising from re-
duced crowding and narrowed linewidths, and accu-
rate analysis of NMR relaxation dispersion (CPMG)
and TROSY-based CEST experiments to measure �s-
ms time scale motions, and an improved NOESY
strategy for resonance assignment. Applications of
this selective labeling technology promises to re-
duce difficulties associated with chemical shift over-
lap and rapid signal decay that have made it chal-
lenging to study the structure and dynamics of large
RNAs beyond the 50 nt median size found in the PDB.

INTRODUCTION

The tertiary architectures RNAs adopt are crucial for mod-
ulating gene expression across all domains of life, making
them important targets of structural and dynamics studies.
For instance, for riboswitches, the presence or absence of
specific ligands drives the folding of one of two or more
mutually exclusive, regulatory states (1–4). In viral RNA
genomes, structured, untranslated regions commonly exer-
cise direct control over viral gene expression (5,6). In the
ribosome, the ability to distinguish between cognate and
near-cognate tRNAs is governed in part by the extrahe-
lical flipping of adenines A1492 and A1493 (7). Both the
global architecture and the subtle motions of specific base
and ribose moieties are thus demonstrably important and
can profoundly modulate an RNA’s function (8).

However, in spite of this importance, directly establish-
ing how dynamics modulates the structure and function of
RNAs has been difficult because X-ray crystallography and
nuclear magnetic resonance spectroscopy are plagued by
distinct but equally challenging problems. In crystallogra-
phy, motions can only be observed in the ps–ns timescales
and the strain imposed by crystal packing can obscure and
distort structural data (9,10).

In contrast, NMR spectroscopy can probe dynamic fluc-
tuations directly over a wide range of timescales. Unfor-
tunately, NMR suffers from both narrow chemical shift
dispersion and rapid signal decay, exacerbated by direct
one-bond and multi-bond spin-spin couplings. The former
leads to spectral crowding and the spin-spin couplings can
lead to decreased spectral resolution and inaccurate mea-
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surements of 13C relaxation rates such as longitudinal re-
laxation rates (R1), transverse relaxation rates (R2), and
heteronuclear Overhauser effect (hNOE) (11–13). Further-
more, these problems become more pronounced as the size
of the RNA increases: the spectral quality deteriorates be-
cause of increased line broadening.

Addressing these problems requires the development of
new technologies. In the past, spectral overlap has been
addressed using heteronuclear multi-dimensional pulse se-
quences applied to uniformly 13C/15N labeled RNAs (14–
16). By spreading the poorly dispersed proton resonances
over the better resolved carbon and/or nitrogen dimen-
sions, it is possible to resolve overlapped proton peaks in
small RNAs. While these advances have greatly aided NMR
structural studies of RNAs with a median size of 30 nt, they
fail for RNAs larger than 60 nt. Out of 460 RNA struc-
tures in the PDB (Protein Data Bank), only seven RNA
structures with sizes >60 nt have been solved by NMR (17–
25). Of these seven, three RNA structures of 101, 132 and
155 nt have been solved using mostly homonuclear two-
dimensional (2D) NOESY methods based on nucleotide-
specific and fragmentation-based segmental 2H-labeling ap-
proaches (18,20,25). Thus, current uniform labeling ap-
proaches while valuable are quite limiting (26,27).

Also of great interest are the large couplings of adjacent
13C nuclei within the ribose and base ring systems which
cause several complications in RNA relaxation measure-
ments. The foremost concern is that uniform labeling intro-
duces strong couplings that can render 13C R1, hNOE and
CPMG (Carl-Purcell-Meiboom-Gill) relaxation measure-
ments inaccurate. These couplings also complicate and limit
the range of applicability of CEST (Chemical Exchange Sat-
uration Transfer) and rotating-frame relaxation rate (R1� )
measurements and analyses while also decreasing the at-
tainable resolution and sensitivity of NMR experiments
(11,13,28–34).

Numerous robust spectroscopic solutions have been pro-
posed in the past to circumvent these coupling problems
(33–41). Unwanted splittings can be removed using con-
stant time (CT) evolution (35–38), adiabatic band selective
decoupling (39–41), or a series of selective pulses. Constant
time evolution limits the acquisition time that can be used
to obtain adequate resolution. To improve resolution re-
quires long constant-time delays that lead to significant sig-
nal loss for large RNA molecules (41). Additionally, ob-
taining accurate relaxation parameters are problematic for
13C-CPMG based relaxation dispersion rates for quanti-
fying millisecond (ms) time-scale processes, as well as R1
and proton–carbon hNOE (28,42) important for quantify-
ing ns-ps time-scale motions in RNA (43,44). Several pre-
cautions are needed to obtain accurate R1 and R1� mea-
surements (28,45–46): provided R1 is derived from the initial
slope of the relaxation decay curve, fairly accurate rates can
be extracted for small RNAs; for R1� experiments, distor-
tions can arise from transfer between adjacent 13C atoms
with similar chemical shifts via a Hartmann–Hahn mech-
anism and these need to be minimized (28,45–46); to sup-
press the echo-modulation caused by the large scalar cou-
plings during the 13C relaxation delay, R1� can be measured
instead of CPMG (28,47–49). Still for nucleic acids high

power spinlocks (>1 kHz) are needed to study isolated spin
pairs such as C2 found in adenine and C8 in both adenine
and guanine. For low spin lock power levels (<1 kHz), os-
cillations can be observed in the monoexponential decay of
peak intensity, arising from residual scalar coupling inter-
actions within neighbouring nuclei (48,50–51).

In addition, application of selective cross-polarization
(52–55) using weak radio-frequency fields can effectively
decouple homonuclear J-couplings. This elegant spectro-
scopic solution has been exploited to measure nitrogen
R1� in proteins and both carbon and nitrogen R1� in uni-
formly labeled nucleic acids (56–59). While this scheme ob-
viates the need for selective 13C isotopic enrichment, in
uniformly labeled samples, the presence of large homonu-
clear scalar couplings again limits the range of applicabil-
ity of these methods (56,51). Finally building upon schemes
for protein 15N and 13C CEST measurements by Kay and
co-workers, Zhang et al. developed a set of nucleic-acid-
optimized 1D/2D 13C CEST experiments that use various
shaped pulses to refocus carbon–carbon scalar coupling
and showed that accurate exchange parameters can be ob-
tained for all CEST profiles in uniformly labeled RNA sam-
ples for purines and ribose carbons(34,60–62). Nonetheless,
they and others acknowledged the following limitations for
both CEST and R1� in uniformly labeled RNA and protein
samples (33–34,60–63). First, the lowest spinlock or saturat-
ing B1 field that can be used is limited (∼3× the scalar cou-
pling) to ∼45 Hz for Ade C2, ∼45 Hz for purine C8, ∼150
Hz for C1’. For pyrimidine ring carbons with large carbon-
carbon couplings of ∼66 Hz, it would require ∼200 Hz
spinlock fields for C5 and C6, clearly intractable with uni-
formly labeled samples. Second, even though 13C–13C cou-
plings do not introduce errors in extracted chemical shifts
for purines, these homonuclear couplings decrease the res-
olution. Ultimately, the coupling effects need to be consid-
ered in the CEST data analyses for couplings greater than
15 Hz. Otherwise, exchange parameters (kex) are overesti-
mated and population ratios are underestimated (33). Thus,
uniformly labeled samples do limit the range of wide appli-
cability of both CEST and R1� to biological problems.

These spectroscopic tools notwithstanding, an alterna-
tive, straightforward and effective solution for overcom-
ing the problem of spectral crowding and J-coupling would
complement existing methodologies. A promising method
is to synthesize site-specific isotopically labeled nucleotides
(11,64–65) as we recently demonstrated with our chemo-
enzymatic production of pyrimidine nucleotides (30,31).
Here, we extend that approach to improving the synthesis
of purine nucleotides. Our synthesis offers improvements in
speed, streamlined reaction conditions, and higher yields.
By combining the newly developed purine nucleotides with
our previous pyrimidine nucleotides we present an im-
provement to the traditional NOESY structural assign-
ment protocol. Additionally, we show that the measure-
ments of relaxation parameters using CPMG, R1� , and
CEST are possible for both small and large RNAs. Further-
more, we demonstrate substantial improvements in signal-
to-noise and line width for relaxation optimized spec-
troscopy (TROSY) experiments compared to the tradi-
tional heteronuclear single quantum coherence (HSQC) ex-
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periments for isolated two-spin systems approximated by
our purine and pyrimidine labeling schemes (30–31,66–67).

MATERIALS AND METHODS

General procedures

Reagents and solvents were purchased from Sigma-Aldrich.
8-13C adenine and 8-13C guanine were either purchased
from Cambridge Isotope Laboratories or synthesized as de-
scribed in the supplementary materials. Similarly, prepar-
ative chemical synthesis of labeled adenine and guanine,
chemo-enzymatic nucleotide synthesis, RNA preparation,
and NMR experiments are detailed in the supplementary
materials.

Data analysis

NMR spectral processing was done in Topspin (Bruker
Biospin) and NVFx (One Moon Scientific). Peak intensi-
ties were selected using in-house software by David Fush-
man. CPMG data were fit to a two-state exchange model us-
ing the full Bloch-McConnell matrix. The time-dependent
evolution of magnetization during the CPMG period was
solved numerically by non-linear least squares fitting using
in-house Matlab software. Errors in fits were calculated us-
ing Jacobian or 200 Monte Carlo simulations (33), and the
larger of the two errors was reported for CPMG and CEST
relaxation dispersion analysis.

NMRViewJ was used for peak assignments. Hydrogen
and carbon chemical shifts are predicted based on the sec-
ondary structure of the input RNA molecule. Expected
cross peaks for different experiment types and labeling pat-
terns were then generated using the RNA Peak Generator
tool. Expected cross-peaks were generated for HSQC spec-
tra based on the covalent structure and for NOESY spectra
using inter-atomic distances typically observed in RNA he-
lices. For bacterial A-site RNA, of which there are no de-
posited chemical shifts in the BMRB database, the RNA
Peak Generator accurately predicted 15 of the 18 expected
C1′-H1′ resonances, 7 of the 9 C2′-H2′, and 20 of the 27
C6/8-H6/8 resonance within 0.1 ppm of their actual val-
ues in the HSQC spectra. Since the NOESY peak gener-
ator was used in a mode where it only predicts peaks in
helical regions, peaks in bulge and tetraloop regions of the
A-site RNA were not predicted. Further assignment of the
NOESY spectra utilized the RNA peak slider tool within
NMRViewJ. This links the predicted peaks into a network
connected by atoms shared between the different peaks.
Peaks are then interactively positioned in a way that uti-
lizes the network of peaks typically connected within the
NOESY ‘walk’. Overall, the combined tools of NMRViewJ
allowed for relatively rapid assignment of the resonance in
the specifically labeled A-site RNA model system and pro-
vides a powerful tool that, when combined with selective la-
beling, can streamline resonance assignment for RNA than
previously reported (41).

RESULTS AND DISCUSSION

We have developed a protocol for synthesizing site-specific
isotopically labeled purine nucleotides with varied ribose

and base patterns (Supplementary Figure S1). In princi-
ple any combination of labeled base and ribose can be uti-
lized, but here we demonstrate the use of both 1′,8-13C and
2′,8-13C purine and 1′,6-13C and 2′,6-13C pyrimidine nu-
cleotides for assignment, structural, and dynamics measure-
ments. These labeling patterns both remove the strong 13C–
13C J-coupling found in uniformly labeled nucleotides and
simultaneously reduce spectral crowding. The removal of
13C J-coupling creates isolated spin systems in both the base
and ribose, and enables the use of TROSY pulse sequences
for studying large RNAs, and these TROSY modules can
be readily incorporated into CPMG, R1� and CEST pulse
sequences for measuring �s-ms timescale dynamics (68–71).

In addition to the removal of strong J-couplings, the new
labels help to greatly reduce spectral crowding and enable
the creation of a new protocol for the NOESY assignment
of RNAs. As a proof of this assignment concept, this pro-
tocol is demonstrated on the A-site RNA.

Chemo-enzymatic synthesis of GTP and ATP

We have created an improved method for the synthesis of
site-selective isotopically labeled ATP and GTP with in-
creased yields and speed of synthesis. Both purine reactions
proceed to completion without the need to purify interme-
diate species. Final yields of >90% and >75% respectively
for ATP and GTP were achieved relative to starting input
adenine or guanine. Both yields are better than previously
reported (72–77). In addition to improved yields, ATP syn-
thesis is complete in 4–5 h while GTP synthesis is complete
in 7–8 h. Previously, ATP synthesis was reported to take 29–
48 h and GTP synthesis 48–70 h (72–77). These improve-
ments allow reactions to be complete in a single day. Addi-
tionally we have taken advantage of the ability of creatine
kinase to act on a variety of substrates to convert NDPs to
NTPs and adapted the use of dATP as the energy source in
the energy regeneration system (77–79). The use of dATP is
ideal since the lack of a 2′-OH of the ribose in dATP pre-
vents its interaction with the boronate column used to pu-
rify ATP and GTP. This offers a more robust synthesis, free
of contaminants, and does not dilute the synthesized labels
with unlabeled ATP. The effectiveness of these nucleotides
is demonstrated by their incorporation into a number of in-
teresting RNAs.

The production of GTP was achieved in a two-step,
one pot reaction. Specifically-labeled ribose and guanine
were combined in the presence of phosphoribosyl py-
rophosphate synthetase (PRPPS), ribokinase (RK), and
xanthine-guanine phosphoribosyl transferase (XGPRT),
with a dATP regeneration system. The dATP regeneration
system was composed of myokinase and creatine kinase,
with creatine phosphate acting as the high energy phosphate
donor. The formation of GMP was monitored by FPLC
and NMR (Supplementary Figure S2). However, due to the
low solubility of guanine (0.01 mM) FPLC was unsuitable
to track its disappearance, thus making it difficult to moni-
tor the progression of the reaction. However, by NMR spec-
troscopy, the resonance chemical shift between the labeled
13C-1′ position of unreacted ribose and newly formed GMP
was used to determine the completion of the first step of the
reaction (Supplementary Figure S2A). When the majority
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of guanine was converted to GMP, in approximately 4–5 h,
guanylate kinase was added to the reaction. Guanylate ki-
nase phosphorylates GMP to GDP. GDP is phosphorylated
to GTP by creatine kinase which acts promiscuously to con-
vert NDPs to NTPs. This was unexpected, as CK is said to
be highly specific (78,79). GMP is completely converted to
GTP in an additional 3 h. We confirmed by FPLC that con-
version is complete and further validate this observation by
31P NMR (Supplementary Figure S2B).

The production of ATP and the progression of the reac-
tion is monitored as reported for GTP. A notable difference
is that adenine’s greater solubility (8 mM) allowed the use of
FPLC to monitor the disappearance of uncoupled base and
the formation of product for all steps of the reaction. La-
beled adenine and ribose were combined in the presence of
PRPPS, RK, adenine phosphoribosyl transferase (APRT),
and the dATP regeneration system. The dATP regeneration
system acts on both AMP and ADP and takes the reaction
to completion in ∼ 4 h. The reaction is similarly monitored
by FPLC and NMR (Supplementary Figure S2C&D).

Synthesis of nucleotides with isolated base C6 or C8 offers
large sensitivity improvements

When studying large RNAs (>40 nts) by NMR, slow molec-
ular tumbling leads to broadened linewidths and losses in
signal intensity. Careful selection of appropriate NMR ex-
periments to address these losses are necessary for success-
ful measurement of many NMR parameters. TROSY ex-
periments take advantage of the interference between the
dipolar coupling and chemical shift anisotropy (CSA) com-
ponents of T2 relaxation (66). For the base C8 position of
adenine and guanine, these contributions effectively cancel
at ∼800 MHz field strength leading to reduction in the R2
relaxation rate (80,81). Thus, RNAs synthesized with our
selective site-specifically labeled NTPs should benefit from
TROSY based NMR experiments that reduce the problems
of crowding, fast signal decay, low resolution, and decreased
S/N ratios (12,34,31,66–67,80–81).

The benefits of TROSY increases with the size of the
RNA. For small RNAs such as IRE (29 nt) we saw substan-
tial, yet modest, improvements for the base region. These
improvements in signal intensities ranged from 2.2- to 3.4-
fold (average: 2.9 ± 0.5) when comparing TROSY with con-
ventional HSQC sequences (Figures 1A and 2A). For the
larger HCV SARS RNA (59 nt), the signal improvements
are larger and ranged from 2.0- to 5.4-fold (average 3.3 ±
1.0) (Figures 1B and 2B). For the C1′ and C5′ peaks the
improvements were more modest since these positions have
lower CSA values (Supplementary Figure S3). Our labeled
C8 approximates an isolated two spin system necessary for
these gains in signal. Thus, the large improvements seen for
these positions when using our site-specifically labeled nu-
cleotides can be harnessed for assignment, structural, and
dynamics measurements (82).

CEST measurements on RNAs >50 nucleotides

The above observations led us to run 13C-TROSY version of
the 15N-TROSY experiment of Kay et al. (68). We decided
that to validate this TROSY pulse sequence it would be ap-

Figure 1. TROSY improvements for IRE and HCV site-specifically labeled
samples. (A) The base region of 1′,5′,8-13C3 GTP labeled IRE. Compar-
isons of the HSQC and TROSY pulse sequences show an average inten-
sity improvement of 2.9 ± 0.5. The inset displays the overlaid slices of the
highlighted residue. (B) The base region of 1′,5′,8-13C3 ATP labeled HCV.
Again comparisons of the HSQC and TROSY pulse sequences show an
average intensity improvement of 3.3 ± 1.0. The inset displays the overlaid
slices of the highlighted residue.

Figure 2. The improvement of HSQC versus TROSY pulse sequences for
IRE (A) and HCV (B).

propriate to mirror measurements made previously on a flu-
oride riboswitch construct (34). Interestingly, our construct
isolated from Bacillus anthracis showed similar behavior to
the construct from Bacillus cereus studied by Zhang et al.,
albeit with slightly shifted values. While for B. cereus kex
= 112 ± 4 s−1 and pb = 10.1 ± 0.1% at 30◦C, the B. an-
thracis construct had exchange parameters of kex = 617 ±
54 s−1 and pb = 3.0 ± 0.1% at 35◦C for a global fit to both
C1′ and C6 (Figure 3). Further, when comparing TROSY
CEST (68) to the traditional HSQC CEST (34), S/N im-
provements of ≈ 2:1 were obtained (Supplementary Figure
S4). While the fits of both the HQSC and CEST data sets
gave similar exchange parameters, comparing the χ2 of the
fits showed significant improvements for the TROSY CEST
experiment (0.6–42.5) when both experiments were run us-
ing the same parameters and experiment time. These mea-
surements were made on the C1′ and C6 positions of a 1′,6-
13C-1,3-15N-5-2H UTP labeled sample.

What then are some of the benefits of a selectively labeled
sample when uniformly labeled samples have been shown
to be adequate? Strong coupling eliminated between ribose
carbons allowed a straightforward analysis of the CEST
data without the need to account for and correct J-coupling
(33,34). In particular obtaining CEST data for C6 pyrim-
idine is particularly problematic because of complications
mentioned above in the introduction using uniformly la-
beled samples and that field strengths of >180 Hz needed
preclude their use in uniformly labeled samples. With our
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Figure 3. The 13C-TROSY CEST profile for the fluoride riboswitch
recorded at 35◦C. Measurements were made on the C1′ (gray) and C6
(black) site of a 1′,6-13C-1,3-15N-5-2H UTP. Data were globally fit to a
2-site full Bloch–McConnell equation. The residue shown is proposed to
be involved in an unstructured to base-paired transition involved in the
formation of a pseudoknot. The B. anthracis construct had exchange pa-
rameters of kex = 617 ± 54 s-1 and pb = 3.0 ± 0.1%.

selective labeled samples, we were able to obtain excellent
CEST profiles readily for both purine and pyrimidines.

CPMG measurements on purine nucleotides and RNAs >50
nucleotides

CPMG relaxation dispersion measurements facilitate the
extraction of information about exchange phenomenon oc-
curring on the �s–ms timescale (83–89). Previously, others
have used similar approaches to measure CPMG experi-
ments for RNAs smaller than 50 nucleotides with specifi-
cally labeled pyrimidine bases (35,36). Here, we present data
that illustrates the effect of creating an isolated, labeled C8
and C2′ positions in our nucleotides, and show that mea-
surements of CPMG parameters are readily accessible with-
out the problem of J-coupled induced oscillations (28,90).

We have transcribed a 59 nt viral RNA with 1′,8-13C la-
beling pattern as a proof of concept. The data indicate that
while a majority of the nucleotides within the RNA do not
experience exchange on the ms time-scale, a few residues
sample a lowly populated state. Without data being fit at
multiple static magnetic field strengths, the only meaningful
parameter that can be extracted is a kex value (Figure 4A).
The exchange rates extracted from the CPMG experiments
on the viral RNA match well with those from CEST experi-
ments (unpublished). Even though similar information, and
perhaps more, can be derived from R1� data, we find that
CPMG is straightforward to setup and analyse compared
to R1� experiments. Thus having labeled RNA that facili-
tates CPMG measurements is important for the field.

Using in-house Matlab scripts, CPMG data were fit to a
two-state exchange model using the Bloch–McConnell ma-
trix as previously described by Kay et al. (90). Site-selective
labels allow us to prepare isolated two spin systems without
the carbon-carbon or carbon-nitrogen scalar couplings. In

Figure 4. CPMG fits for HCV SARS (A) and A-site (B). (A) The CPMG
data revealed kex for select residues in the Human corona virus RNA ele-
ment. Data were measured on the C1’ position of a 1′,8-13C labeled sample.
(B) CPMG was run at 14.1 (�) and 18.8 (•) T static field strengths for the
A-site RNA. A global fit revealed kex = 3800 ± 200 s-1 and pb = 1.8 ±
0.1%. These results were in agreement with previously reported values (8).
Measurements were made on the C2′ position of 2′,8-13C labeled sample.
The A1493 position that these curves belong to has been implicated in the
discrimination of cognate and near-cognate tRNAs in the ribosome.

the past, such scalar couplings have hindered the interpreta-
tion of relaxation dispersion data (89,90). Using the bacte-
rial A-site RNA as a model system, we were able to capture
motions on the microsecond timescale using CPMG exper-
iments to monitor exchange of the ribose C2′ residues. It is
widely accepted that motions in residues A1492 and A1493
are involved in the discrimination between cognate and
near-cognate tRNAs (7–8,91–93). Most notably, A1493, a
residue that flips in and out of the bulge region of A-site
showed characteristic dispersion profiles (Figure 4B). The
extracted kex and pb values of 3800 ± 200 s−1 and 1.8 ± 0.1%
match well the previously reported values of 4000 s−1 and
2.5% determined by relaxation dispersion measurements on
the C1′ positions of the ribose moieties (8). Thus, our labels
can be used to readily and straightforwardly capture lowly
populated states in RNA.

Reduction of spectral crowding for large RNAs

The relatively narrow spectral width over which base and
sugar carbons and protons resonate is a major limitation of
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RNA NMR that must be overcome (82). Overlap of signals
is only partially alleviated by 2D and 3D NMR experiments
in samples in which all 4 nucleotides are uniformly 13C- and
15N-labeled. We reasoned that what would be critical for de-
cluttering spectra to manageable levels for large RNAs is
not only the ability to choose which of the four nucleotides
to label, but also which of the atomic sites to isotopically
enrich. To demonstrate the power of this approach, we have
examined RNAs ranging in size from 27 to 59 nucleotides
in length.

For a large RNAs transcribed with only 1′,8-13C2 ATP,
the resonances that belong to the adenine C8 can be iden-
tified rapidly when compared to a sample that has all four
nucleotides fully-labeled (not shown). While it is possible
to achieve a similar result using a fully labeled ATP only
sample, one bond 13C–13C and 13C–15N couplings quickly
degrade the quality of the spectrum. With a view to de-
sign a new NOESY assignment protocol, we synthesized
RNA samples that maximize the information content of
their spectra while simultaneously alleviating spectral over-
lap.

NOESY resonance assignments: an alternating 13C-1′ and
13C-2′ labeling scheme

The classic approach to assign resonances in a helical
stretch of an RNA employs a NOESY walk methodology
(41,94). Protons close in space (<5 Å) can produce cross
peaks in a NOESY spectrum indicative of a through-space
transfer of longitudinal magnetization between the adjacent
nuclei. For nucleotides in a helix, the protons attached to
the C8/C6 of the base and the C1′/C2′ of the sugar fulfill
this distance requirement. By labeling all nucleotides at the
C1′ and C8/C6, the base and ribose of adjacent nucleotides
can be connected. However, as the size of the RNAs in-
creases, spectral crowding becomes especially pronounced
in the sugar resonances and may lead to incorrect peak as-
signments. In the past the solution to this problem might
have been to remove these resonances by transcribing the
RNA with unlabeled cytosine. While the spectra would then
be simplified, the NOESY walk is broken in any helical
stretches that contain cytosine. Here we propose an alterna-
tive approach. Instead of transcribing the RNA with unla-
beled cytosine, a different labeling pattern such as 2′,8-13C
could be used. In this way, the NOESY walk is preserved
while removing the overlapping C1′ resonances.

Thus, by combining our previous work on pyrimidine
synthesis with our current purine synthesis, we can make
RNAs that provide labeling patterns that enable an impor-
tant advance in NOESY assignment strategies (41,94). For
the conventional uniformly labeled samples, the C2′ and C1′
resonances are both extremely crowded as discussed above.
In a traditional NOESY walk all nucleotides or various per-
mutations are fully-labeled. NOE crosspeaks between pro-
tons attached to the C1′ and C2′ and the C8/C6 of the same
and previous nucleotides are observed for helical regions.
As we have illustrated, spectral crowding can severely hin-
der this assignment process. However, by labeling the base
of C6/C8 of each nucleotide and alternating the label on
the ribose between C1′ and C2′ a sample is created that
not only distinguishes the purines from the pyrimidines but

also the A–U and the G–C pairs. We first made nucleotide
specific labeled samples, and from the overlaid spectra, we
could immediately tell that C/U and G/A showed more
spectral overlap in their sugar resonances. Thus it was nec-
essary to label C/G on their C1′ carbons and U/A on their
C2′ carbons. As a proof of concept we have labeled the bac-
terial A-site RNA with 1′,6-13C-1,3-15N CTP, 2′,6-13C-1,3-
15N UTP, 1′,8-13C GTP, and 2′,8-13C ATP (Figure 5). By
combining this alternative labeling strategy with NOESY
experiments that allow for filtering/editing of 1H cross-
peaks based on the attached carbons (12C versus 13C), we
can create a unique and powerful system to assign reso-
nances without ambiguity (94–96). For ambiguous or over-
lapped cross-peaks, we utilized 3D 13C-NOESY-HSQC ex-
periments. This alternating ribose pattern allowed us to un-
ambiguously assign helical regions of RNA. In future work,
we will streamline this methodology for use in larger RNAs.

The resulting assignment matched those previously de-
termined (8). In situations where there is significant over-
lap in the base region, samples in which certain bases are
unlabeled or even deuterated can be made allowing for the
assignment bottleneck to be quickly circumvented.

CONCLUSIONS

This work extends our previous synthesis of pyrimidine
(30,31) to purine nucleotides. We have shown that the abil-
ity to easily synthesize a variety of purine and pyrimidine
nucleotides facilitates the study of large RNAs. These nu-
cleotides are suitable for use in three key aspects of RNA
NMR structural biology: assignment, structural and dy-
namics measurements.

The first advantage of these new site-specific labels is the
potential for new assignment schemes. We have coupled al-
ternate labeling of either C1′ or C2′ labeled ribose to C8
labeled purine bases. These combinations have allowed us
to develop a new NOESY assignment strategy that bene-
fits from reduced spectral crowding. This new strategy takes
advantage of the large proton chemical shift differences be-
tween the C1′ and C2′ ribose carbons. By using an alter-
nating C1′ and C2′ pattern with labeled bases, the NOESY
spectrum is greatly simplified without compromising the in-
formation content present. Since all nucleotides are labeled,
a complete NOESY walk is possible in helical regions. Ad-
ditionally if the purines and pyrimidines labeled with C1′
and C2′ enrichment are reversed, orthogonal data is gener-
ated that can confirm the previous assignment.

The second advantage of these new labels is that the re-
moval of the strong 13C J-coupling leads to substantial im-
provements in signal intensity in the protonated base C6
and C8 positions. Additionally, these isolated spin pairs
have facilitated the measurement of �s-ms dynamics using
CPMG and CEST pulse sequences without the complica-
tions of large carbon-carbon couplings. Finally with these
isolated ‘two-spin’ labels, these couplings need not be ex-
plicitly taken into account in the data analysis of CEST pro-
files as required in previous studies using uniformly labeled
RNA or protein (33,34), but also be able to probe more use-
ful sites such as pyrimidine C5 and C6 sites. It is impor-
tant to note that other dispersion experiments such as R1�

will also benefit from using RNAs transcribed with isolated
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Figure 5. (A) NOESY walk of the bacterial A-site RNA using alternatively labeled nucleotides. Starting at the H1′ of C14, the connectivity from the sugar
H1′/H2′ to C8/C6 of the N+1 base enables sequential assignment all the way to the H1′ of G19. This allowed the consecutive assignment of 6 residues
present in the helical environment. Connectivities follow the placed arrows and move sequentially from cyan to magenta to yellow to black. (B) Pymol
representation of the NOESY walk using the same coloring scheme as used in the NOESY walk (PDB: 1A3M (98)). (C) Predicted versus actual chemical
shift values for the assigned residues as determined by NMRViewJ (One Moon Scientific). The offset from the central line represents how far the assigned
resonance is from its predicted value. Blue circles represent resonances that are less than 0.1 ppm from predicted values, red circles have predicted ppm
more than 0.1 ppm away from observed chemical shift.

spin systems. The improvements we see from TROSY based
pulse sequences scales with the size of the RNA.

A price to pay for not using spectroscopic tools to min-
imize the 13C-13C coupling problem is that the number of
probe sites is now limited to the labeled sites. Nonetheless,
it still remains useful because our method allows for very
rapid accumulation of chemical shifts, a set of parameters
that are easily and accurately measured and available at
very early stages of NMR data analyses. Thus by measuring
various chemical shifts (H1′/C1′, H2′/C2′, H5′,H5′′/C5′,
H2/C2, C4, H5/C5, H6/C6, H8/C8, N1, N3, N7, N9),
we think the availability of such parameters will facilitate
chemical shift based structure calculations of RNA, espe-
cially for constructing structural models for transiently and

sparsely populated RNA states as has been done, so far,
only for proteins (97).

We, therefore, anticipate that as the size of the RNAs un-
der investigation becomes greater than 100 nucleotides the
combined use of these selective labels with TROSY- and
HMQC-based pulse elements will be critical for advancing
NMR for the study of the structure and dynamics of a large
number of new and interesting RNAs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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